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Active learning strategies aim to increase student critical thinking and engagement.
In this article I describe my biochemistry classroom switch from lecture-only to
half lecture and half in-class activities, inspired by Process Oriented Guided
Inquiry Learning (POGIL). Students in a first semester biochemistry course
maintained the same ACS exam scores at the end of the course, continued to rate
the course and its instruction highly, and class attendance significantly increased
after the change in pedagogy. This format was also implemented in a second
semester biochemistry course during a course redesign. The flexibility of in-class
activities allowed an iterative addition of a bioinformatics themed course-based
undergraduate research experience (CURE). The Biochemistry II students report
learning practical skills that are likely to benefit them in the future.

Introduction: Transition to Half Lecture and Half In-Class Activities

Five years ago, after teaching in a primarily lecture-only format, I transitioned to a classroom
structure of half lecture and half in-class activities. This switch was inspired by attending an
intermediate-level workshop on Process Oriented Guided Inquiry Learning (POGIL). I continue
to teach in this format because I see students make connections in the classroom, can more easily
discern challenging areas for students, and I appreciate the flexibility of multiple teaching strategies.

My experience with using in-class activities is that it requires an equivalent effort to lecturing
but uses different skills due to the need to facilitate group work and develop activities that meet the
learning objectives I use.Through facilitating in-class activities, I am more excited and engaged in the
classroom and can more easily introduce new lecture innovations. For example, I recently introduced
a course-based undergraduate research experience (CURE) during the first half of the semester in
Biochemistry II.
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Evidence-Based Active Learning with a Focus on Biochemistry

The Case against Straight Lecture

Student success depends on active engagement, making connections between new content and
prior knowledge, and developing sufficient understanding to apply material to new content areas
(1–5). While lecture remains popular, there is increasing evidence that a lecture-only classroom has
limited capacity to elicit skills that we want our students to develop, including accurate figure analysis,
successful extraction of information from written passages, and an ability to make connections
beyond specific examples (6–8). In addition, student attention lapses with increasing frequency
during lecture. While inattention can be reduced by engaging practices such as demonstrations and
real-time formative assessments such as classroom polling, these practices do not typically challenge
students to transfer knowledge broadly (9). We hope students will retain key concepts for use in
future courses and in their careers, but my experience in the biochemistry classroom shows I cannot
assume that students will always successfully remember and apply general chemistry and organic
chemistry concepts. Students also struggle with transfer of knowledge from the classroom to other
domains.Hence, there is a call for educators in biochemistry and related fields to work collaboratively
to improve our teaching and to rethink how we spend our valuable in-class time with our students (1,
10).

Active Learning Pedagogies

Active learning pedagogies,which include POGIL, problem-based learning (PBL), and peer-led
team learning (PLTL), aim to create opportunities for students to engage with the course material
in a supportive environment where they can take advantage of interacting with their peers while
under the guidance of an experienced instructor (4). Active learning was an important element of
a highly-structured course design that decreased the achievement gap in introductory biology (5);
another study looking at an introductory biology course found gains were especially pronounced
among students in the lower end of the grade distribution (11). Over eighty percent of biochemistry
students in a large class reported in-class POGIL activities helped them learn (12). Group work may
lead to learning gains due to increased peer and student-teacher interactions, and structured small
groups and varied active learning strategies are proposed to promote equity and inclusion (13). It also
provides an opportunity to target specific biochemistry concepts, as Mary Kopecki-Fjetland details
in the chapter entitled “Introducing Active Learning to Improve Student Performance on Threshold
Concepts in Biochemistry (14).”

A recent study found increased course motivation in students taking biochemistry in a small
group and discussion format (15). Other research has shown value in using significant amounts of
class time for students to interpret textbook figures, first independently and then in groups (8). The
skills that are important for the acquisition of new knowledge include visual literacy, reading and
understanding biochemical literature, and deep (rather than surface) learning,which can be practiced
through in-class activities (6–8). Other goals for active learning may include communication skill
development, enhanced ability to work in groups, improved attitudes, increased motivation, higher
retention rates and a decrease in the achievement gap (5, 11, 15–18). For example, a meta-analysis
examining problem-based learning at a Dutch medical school found improved interpersonal skills
(19). Students using PBL completed the program sooner and with a higher retention rate, with a
smaller, positive effect for acquiring medical knowledge (19).
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Recently there has been increased interest in course-based undergraduate research experiences
(CUREs), which involve all students in the course in addressing an authentic research question (20,
21). Elements of a CURE include using scientific techniques,making discoveries that fit into broader
scientific endeavors, collaboration, iteration, and authentic product production (20, 21). CUREs
have been proposed to have a myriad of benefits for students, including increasing persistence in
science majors, and offering the experience to all students in a course rather than a self-selected group
of students who volunteer for other research experiences (20).

Here I share my journey of introducing in-class activities in biochemistry lecture courses over the
past five years. While detailed descriptions of implementing POGIL in full-class periods have been
given elsewhere (17, 22, 23), here I share my experience with a hybrid approach in Biochemistry
I, a move from full-class lecture to half lecture and half in-class activities, and include impacts on
broad measures of student success and satisfaction. This foundation influenced the way I developed
Biochemistry II during a course redesign. I initially mimicked what I did in Biochemistry I but
evolved to link individual in-class activities and develop a CURE. After sharing my specific
experiences, I discuss common concerns about making a switch to active learning and provide
specific recommendations for making a smooth transition.

Active Learning Modifications to Biochemistry I

In Fall 2014 I introduced in-class activities in Biochemistry I, the first semester of a two semester
sequence, by adding guided-inquiry worksheets.There are well-regarded published POGIL activities
for Biochemistry which I used throughout the Fall 2014 semester (24). I ultimately decided to
write my own activities, typically using at least one image from the textbook, so I could specifically
target my learning objectives with in-class activities reinforcing and expanding upon content initially
introduced in lecture.

At Metropolitan State University of Denver (MSU Denver), Biochemistry I is offered twice per
week in 110 min blocks. Class formats before and after the introduction of active-learning segments
are shown in Table 1. Groups of three to four students were formed on the basis of proximity in
the classroom. This strategy worked in a classroom with movable, individual desks as well as in a
classroom where students shared long tables, in which some students would turn around to work
with students behind them. Other class formats were unchanged, including the learning objectives,
weekly online homework assignments, weekly short (approximately 10 minutes long) quizzes, and
clicker questions in lecture portion. I continued to give four midterm exams and the 2012 ACS
Biochemistry exam (40 core questions) as the final exam. One slight change is that I shifted from
giving 1 point/day for attendance (4% of total grade) before in-class activities to 2 points/day with
in-class activities (7% of total grade). In both cases the lowest two attendance scores were dropped
from the students’ grades.

Table 1.Class Format before and after Addition of In-Class Activities
Before in-class activities (F13, S14) After in-class activities (F14, S15, F15, S16)

10 min quiz (one day a week) 10 min quiz (one day a week)

45-55 min lecture 45-55 min lecture

5 min break 5 min break

50 min lecture 35 min in-class activity

15 min reporting out
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Fractional attendance (classes attended/total classes), final grades and ACS exam scores were
compared for students who completed the whole semester, as measured by taking the ACS exam,
from before and after the shift to POGIL instruction using unpaired, two-tailed t-tests (F13, S14,
n = 59; F14, S15, F15, S16, n = 122). Pearson correlation coefficients were computed for class
attendance (number of classes attended during the semester) and ACS Biochemistry exam score as
well as for class attendance and final grade in course. All statistical analyses were performed using
GraphPad Prism.

Impact on Attendance

In my Biochemistry I course there was a significant correlation between attendance and ACS
final exam score, as well as attendance and final grade in the course, by Pearson correlation (Table 2).
This correlation was observed before the introduction of in-class activities semesters (F13, S14) and
after the introduction of in-class activities (F14-S16).These results are consistent with prior research,
which shows class attendance in college is positively correlated with student grades (25–27). In
addition, the meta-analysis shows that class attendance is a better predictor of college grades than
SAT scores, high school GPA, study habits and study skills (25).

Table 2.Correlation between Attendance and Student Performance
F13-S14 Attendance
vs. ACS exam score

F13-S14 Attendance
vs. Grade %

F14-S16 Attendance
vs. ACS exam score

F14-S16 Attendance
vs. Grade %

Pearson r 0.2799 0.6896 0.3023 0.4622

95% confidence
interval

0.02566 to 0.5001 0.5265 to 0.8038 0.1316 to 0.4556 0.3099 to 0.5914

R squared 0.07834 0.4756 0.09138 0.2136

P value 0.0318 <0.0001 0.0007 <0.0001

Significant? (alpha=
0.05)

Yes Yes Yes Yes

n 59 59 122 122

The combination of adding in-class activities and a modest increase in the number of points
possible for class participation led to a statistically significant increase in attendance among students
who persisted to the final. As shown in Figure 1A, attendance increased from an average of 77.2%
(n = 59, SD = 11.76) of class periods attended to 88.5% of class periods attended (n = 122, SD
= 19.62). Implementation of POGIL in an organic chemistry discussion section led to a significant
increase in attendance of about 12%, similar to the amount seen in this study (22). In an introductory
biology course that already had high overall attendance, active-learning activities led to a statistically
significant increase in attendance of approximately 4% (11).

Overall, final course grade percentages were increased, but not significantly, after the addition
of in-class activities (F13,14 mean = 82.92, SD = 12.5, n = 59; F14-S16 mean = 84.19, SD =
10.97, n = 122). However, when looking only at the lowest quartile of student grades (Figure 1B),
the final grade percentages significantly increased, from a F13,14 lowest quartile mean of 66.59%
(SD = 7.217, n = 15) to a F14-S16 lowest quartile mean of 70.46% (SD = 4.764, n=31). Thus,
in-class activities with a small number of points associated with attendance benefited the grades of
lower achieving students. In addition, the number of students who persisted to the final and ended
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up receiving less than 60%(an F) in the course decreased from 8.5% before in-class activities to 0.8%
after the introduction of in-class activities. This effect was predicted by Credé et al., as even a modest
increase in grades can dramatically affect the failure rate (25).

Figure 1. Impacts of In-Class Activities on Attendance and Student Performance. The two semesters before
(F13-S14) and the four semesters after (F14-S16) introduction of in-class activities were compared with
respect to fractional attendance (A) and final grades of students in the lowest quartile of the class (B). All

graphs show mean with SEM. A significant difference was seen for attendance ( p < 0.0001, ****) and in
the lowest quartile of final grades (p = 0.0351, *).

Biochemistry I ACS Final Exam Scores

The 2012 ACS Biochemistry exam (40 question core version) was given to all the compared
Biochemistry sections. The scores for the two semesters prior to adopting in-class activities (F13,
S14) were compared with scores from the four following semesters in which I used in-class activities
(F14, S15, F15, S16). As shown in Figure 2A, the ACS exam scores were statistically unchanged by
the introduction of in-class activities (F13, S14 mean = 21.93, SD 5.681, n = 59; F14-S16 mean =
22.48, SD = 5.511, n=122). These results are consistent with published data showing that POGIL
does not result in any losses on standardized tests (4).When specifically looking at the lowest quartile
of students, the observed increase had a but still did not meet the threshold for significance, see
Figure 2B (F13, S14 mean = 14.67, SD = 2.637, n=15; F14-S16 mean = 15.90, SD = 2.039, n =
31)

When specific ACS exam questions were compared from before (F13, S14) and after (F15,
S16) the introduction of a consistent set of in-class activities, scores on three of the 40 questions
were statistically significantly different using the cutoff of p = 0.00125 required to control for the
family-wise error rate. Interestingly, one of the three questions was answered more poorly after
the intervention; it was on a topic that was intentionally dropped from the course, and moved to
Biochemistry II, after the introduction of the in-class activities. Student scores were higher on two
questions after exposure to the in-class activities and, perhaps not surprisingly, both were on topics
covered by the in-class activities. These results capture some of the gains and losses that come with
covering a smaller amount of content in the semester but with greater depth.

Ideally, after students complete an activity on a concept, they will have increased their
understanding of the concept and made gains in other areas targeted by the activity. These other
gains may include confidence in interpreting data, working effectively in a group, or reflecting on the
learning process. However, it can be challenging to measure gains in learning, even in the conceptual
area. A foundational concepts in biochemistry inventory, with a pretest and posttest format, showed
students in a large lecture course made clear gains in some concepts, like bond energy and pH/pKa,
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but did not with respect to concepts of alpha helix structure and protein function, despite using an in-
class activity targeting alpha helix structure (28). This negative result is an important reminder that
students do not always make the learning gains that we expect and the value of including assessment
measures to verify predicted gains.

Figure 2. Impacts of In-Class Activities on ACS Biochemistry Exam scores. The two semesters before (F13-
S14) and the four semesters after (F14-S16) introduction of in-class activities were compared with respect to

ACS Biochemistry final exam scores (A) and Biochemistry ACS final exam scores of the lowest quartile of
students (B). All graphs show mean with SEM. No significant change was seen for total biochemistry ACS

final exam scores (p = 0.5394) or lowest quartile ACS scores (p = 0.0871).

Impact on Ratings of Instruction

One concern I had upon making the switch to half-active learning in the classroom is that
student ratings of instruction (SRI) scores might decrease, especially during initial attempts at
implementation (11). Students have been shown to value lectures and individual active learning but
to be suspicious of the value of cooperative learning (29). MSU Denver student ratings of instruction
(SRI) have only two questions: evaluation of the course as a whole, and evaluation of the instructor’s
contribution to the course. For each question the options are excellent (6), very good (5), good (4),
fair (3), poor (2) or very poor (1). SRI scores from semesters prior to using in-class activities (F13,
S14, n= 47)were compared with scores after introducing in-class activities (F14, S15, F15, S16, n=
99) using unpaired t-tests.

I was pleased to observe that the SRI scores for both the course as a whole (Q1) and the
instructor’s contribution (Q2) were statistically unchanged after the switch (see Figure 3). The 50/
50 mix of half-lecture and half in-class activities may be perceived more favorably by students than
a complete switch to in-class activities (11). In this present study, the same instructor taught the
lecture-only as well as the active learning classes, which differs from the study by Walker and
colleagues in which significantly lower scores were found in the active section but instructors differed
between sections (11). I communicated reasons for my change in teaching style with the students
in an attempt to gain buy-in, sharing that the activities would break up the monotony of a long
lecture (110 minute) and that we would bring some of the frustration that students would otherwise
encounter in homework into the classroom, where classmates and the instructor are available as
resources. Finally, I used the in-class activities as a foundation for some exam questions, providing
evidence to the students that their effort on in-class activities will also help their performance on the
exams, which students value (29).
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Figure 3. Student ratings of instructor (SRI) scores for course as a whole (A) and instructor contribution
(B). All graphs show mean with SEM. No significant change was seen for SRIs before and after introduction

of in-class activities (Q1 p = 0.1237, Q2 p = 0.4842).

Guided Inquiry Activities for Biochemistry II

New Course Preparation as an Opportunity to Introduce In-Class Activities

In Spring 2016, the MSU Denver Department of Chemistry began offering a new version of
Biochemistry II, which had been previously taught as a special topics course and is now a second
semester continuation of Biochemistry I. I used this new course format as an opportunity to prepare
approximately hour long lectures to be followed by approximately 50 minute in-class activities.These
activities provided students opportunities to read biochemical literature and interpret figures. My
experience was that it did not take any longer to develop in-class activities than to prepare lectures
for the first time, particularly through the use of chapter references in the textbook as a starting place
in my search for appropriate and relevant articles. These activities were based in part on experiences
I had in seminar style courses in graduate school but with the goal of offering more support and
scaffolding for students.

Opportunity to Introduce a CURE

After teaching Biochemistry II in this format for two semesters, I developed a linked series of
activities involving online Biochemistry resources for DNA and protein sequences. The following
semester I modified that linked set of activities to involve proteins related to iron uptake in insects, a
topic of interest for a research project I am performing in collaboration with Dr. Maureen Gorman
at Kansas State University. By linking the activities to my research I developed a Course-based
Undergraduate Research Experience (CURE) called “A Bioinformatic Look at Iron Uptake in
Insects” (30). While CUREs typically have been found in laboratory settings, the ability to perform
bioinformatics work anywhere there are computers helped facilitate my incorporation of a CURE
into biochemistry lecture. A resource for finding CUREs is CUREnet (31).

A major goal of my CURE is for students to gain experience with commonly used sequence
databases and sequence analysis tools, such as organism independent databases UniProt (32) and
NCBI (33), data publicly available an online resource for the Drosophila melanogaster community
called FlyBase (34), multiple sequence alignment tool Clustal Omega (35), and protein family
database Pfam (36). Student findings can help inform our research and make a contribution to
increasing human knowledge, which is another benefit. Students were assigned to groups and to a
specific protein (and its gene) related to iron uptake in insects. The groups spent the second half of
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the class period working on guided activities that I wrote to guide use of resources. The topics for the
in-class work are summarized in Table 3, alongside the lecture topic for the day. Each group member
individually would make an entry with answers to questions and a record of their investigation in a
free online notebook program called Benchling (37), which I graded five times during the project.
The final product was a group memo to my collaborator, who provided written feedback to the
students. I graded the draft and final memos and gave additional feedback at each stage.

Table 3.Overview of CURE Piloted in Fall 2018
Day Lecture Topic Group Activity Topic

1 Review of nucleic acids Discuss past group work experiences and strategies for
success

2 Introduction to iron uptake in
Drosophila project

Explore an assigned protein sequence in UniProt

3 DNA replication Use FlyBase to explore the gene related to the assigned
protein sequence (gene of interest, GOI); Benching entry #1
due

4 Genomes and ENCODE project Explore mRNA transcripts for GOI in FlyBase and link to
Eukaryotic Promoter Database

5 Transcription Analyze RNAseq data for GOI available in FlyBase;
Benchling entry #2 due

6 Splicing Introduction to amino acid alignments with protein isoforms
from GOI

7 Translation Introduction to protein BLAST searching; find homologs of
assigned protein in other insect species; Benchling entry #3
due

8 Histones and regulation of gene
expression

Protein domain families and PROSITE; PBLAST with a
protein domain of interest

9 Signal transduction through nuclear
receptors

Make multiple sequence alignments of BLAST search
results; Benchling entry #4 due

10 DNA repair Time in class to work on memos to collaborator
summarizing results

11 Finish DNA repair; review for
midterm 1

Draft memo due at end of day; Benchling entry #5 due

12 Midterm #1 Draft memos returned

13 Metabolism Review Last chance to work on memos in class

14 Lipid metabolism Final memo due

I emphasized to the students that the skills they learned could be transferred to other research
questions. This was reinforced in the second half of the course, when the students built on the skills
developed during the first half of the semester to analyze a protein of their choosing. The individual
research paper required students to generate a multiple sequence alignment comparing their protein
of interest to a related protein that has a solved 3D structure and to explore elements of structure as
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they relate to the protein function. These open-ended projects require students to think deeply and
synthesize multiple concepts. Advantages of such projects include students working at a higher level
(for example, within Bloom’s taxonomy) and with more motivation (1).

An end of semester anonymous survey question about the CURE included three open ended
questions. In response to “What were the greatest benefits you gained from participating in this
project?” two thirds of the students mentioned using the online databases and tools. For example,
“The greatest benefit from this project came from learning how to use different research tools available online
in a practical and relevant way.” A remaining almost thirty percent commented on iteratively “doing”
science and conducting research.“Compared to my other science classes, I felt like there was room for error
but there was an ability to quickly learn from it and also to put in our input as well. It really made us feel like
we were actually “doing” science instead of just lecture.” Another student commented about “feeling it
preps for a real world transition into a work place.”

Students were also asked, “How would you like to see this project changed in the future?”
Twenty percent of the students wished there had been less group work. “I would prefer to not do
a group paper for the first project. I enjoyed the second research project and didn’t find anything I’d
like to change.” Thirteen percent wished for more clarity about group expectations and how to use
resources. For example, one student wrote to suggest “assigned roles or an example of expectations
of the final contribution or participants.” Defined roles are a standard element of POGIL and could
be incorporated into a longer project like this CURE. One third of the students did not make any
suggestions for improvement.

I also requested testimonials from previous students to enhance student buy-in at the beginning
of the semester. For example, one former Biochemistry II student wrote, “Honestly, when I first took
Biochem 2, I really didn’t think bioinformatics had anything to do with the science or research I was interested
in. When I got to grad school I found that it is really heavily used in many different areas of research (even
biophysics and engineering!). Immediately, in two of my grad level courses, we were expected to use BLAST,
UniProt, ExPASy, and more without any guidance from the professor. So, it was really helpful having a leg
up because I had experience working with them from this [Biochemistry II] project.”

Addressing Instructor Concerns about Active Learning Pedagogies

Challenges with Implementing Active Learning Pedagogies

POGIL activities fit within single class periods and there are also published POGIL materials
available, yet implementing active learning pedagogies can be challenging (17, 24). Selection (and
often development) of the in-class activities and gaining facilitation skills for guiding students
working in small groups requires time and effort. In fact, the majority of faculty trained at workshops
for new methods fail to implement them (38, 39). In addition, reduction or elimination of lecture
often leads to concerns about covering all the content in the course. In some cases students have been
found to focus positive comments on their professor in lecture-only courses and, in a more active
learning setting, switch the positive feedback to the course itself (11), although fortunately that has
not been my experience.

In-Class Activity Development

My approach to writing activities has been to start with my learning objectives, which is
sometimes called backward course design (1). A planning tool for using backward design to support
lesson development for active learning was used for a non-majors biology course and can be applied
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to the biochemistry classroom as well (40). I found figures or other content that students would
benefit from having time to look at in more detail. I considered images from lecture slides that
provoked confusion and were difficult to explain quickly in lecture as good candidates for in-class
activity questions. A study on active and problem-based learning in introductory biology suggests
group exercises are ideally challenging enough that it is hard for students to solve them on their own
but over 50% of the groups can complete them as a team (16). I have found that it is helpful to follow
the POGIL activity format, starting with more directed questions that are eliciting observations, then
moving on to convergent questions that require students to identify patterns or draw conclusions,
and ideally including divergent questions that require application of concepts, synthesis of
information, or creative thinking (23). It is also important to pay attention to how the activities
actually work in class. I have found that it works best if I modify my activities right after class so
that they are ready for the following semester and, as has been observed previously, it is valuable to
incorporate student feedback in future iterations of the activity (16).

Concerns about Quantity of Content Covered

Concerns about covering the same amount of content that would be covered in a lecture-only
classroom can be addressed in multiple ways. Content can be shifted from lecture to in-class activity
so that it is covered, but in a slightly different way than before. For example, I now cover coordinated
regulation of glycolysis and gluconeogenesis through an in-class activity rather than lecture.
Additionally, content can be moved outside the classroom using strategies from “flipped classrooms”
or online learning, such as assigned readings, video lectures, and homework questions (41, 42).
There might be a dual advantage to coupling flipped classrooms with adding in-class POGIL activities
as there have been learning gains documented for flipped classrooms, including increased scores
from lower performing students in a general chemistry II classroom (43). We can also streamline
our PowerPoint or other lecture materials to set the stage for in class activity rather than intensive
content delivery (40). Finally, there may be some topics that can be omitted while maintaining the
same course learning objectives.

Advantages for Instructors

Unfolding of the Learning Process

An advantage of in-class activities is that the instructor can see the learning process unfolding,
which includes instructor exposure to difficult concepts for students prior to seeing their incorrect
answer on an exam question (44). This provides an opportunity to address chronic
misunderstandings, such as thinking energy is released when a bond breaks (28, 45, 46). When
observing students discussing a question related to this concept, I realized how content from my
lecture, a statement about potential energy being stored in bonds, was contributing to that
misunderstanding. While others have previously made the observation that describing energy as
being stored in bonds is problematic, had I not been listening to my students reason out-loud in class,
I would still be unaware how I was contributing to their confusion (47).Other instructors value active
learning opportunities for insights into learning processes and as a chance to reflect on our instruction
(14, 46).

284
 Bussey et al.; Biochemistry Education: From Theory to Practice 

ACS Symposium Series; American Chemical Society: Washington, DC, 2019. 



Ongoing Innovation

My switch to half lecture and half in-class activities had the additional advantage of facilitating
additional innovation in the biochemistry classroom. I can adjust the activities and ratio of lecture,
active learning in the classroom, and assignments outside of the class depending on the content
covered. By having blocks of time in the classroom that are more flexible, I was able to implement
a seven-week course-based undergraduate research experience based on my work on iron uptake in
insects during Biochemistry II.

Shifting away from a lecture-only format provides opportunities for additional skill development
in the classroom. One of my goals is student preparation for life after graduation, whether they
attend graduate school or obtain a professional position. As our students transition to graduate or
professional schools and careers, they need to be proficient in processing and learning information in
a more independent manner. This is in part why the GRE subject tests and the MCAT have passages
and figures to be read and analyzed. The skills important for the acquisition of new knowledge
include visual literacy, reading and understanding biochemical literature, and deep (rather than
surface) learning, all of which can be practiced through in-class activities (6–8). Other goals
researchers have aimed to address through active learning include communication skills, ability to
work in groups, improved attitudes and retention rates, increased motivation, and decreasing the
achievement gap (5, 11, 15–18).

Opportunities with the Growth of Open Educational Resources

Using in-class activities requires a switch from lecture content delivery and brings the freedom to
address learning objectives in a variety of ways (40). A creative focus on meeting learning objectives
dovetails with the growing movement to use open educational resources (OER), which allow free
reuse, remixing and redistribution with the appropriate attribution (48). Facilitated by Creative
Commons licensing, there is now an unprecedented opportunity to share instructional materials
through repositories including OER Commons (49), LibreTexts (50), MERLOT (51), and
CUREnet (31). In the future we could have a robust community of practitioners sharing activities
through such resources.

Strategies for Making a Switch

Goals

My recommendations for instructors looking to make a change in their classroom are to reflect
on what is already working well, then identify elements they would like to change and why. My
goal for Biochemistry I was to have students actively engaging with content in the classroom and
encountering points of challenge and confusion while their classmates and I were available. I
appreciated being able to share some content in lecture, so I kept about half of my lecture time and
made my lectures more efficient. I then introduced activities that required application of content,
reading, and figure analysis. In the context of Biochemistry II, my goal has evolved into students
transferring classroom knowledge to using bioinformatics based tools and data sets to generate new
knowledge. This has required a more elaborate, connected set of activities.
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Finding or Creating Activities

For in-class activities, instructors can explore existing content, including the Foundations of
Biochemistry book and case studies through the National Center for Case Study Teaching in Science
(24, 52). Directed case studies have been used in a variety of capacities in the biochemistry
classroom, both for in-class and homework purposes (44). Another easy entry point is having
students focus on careful figure analysis using figures from their textbook (8). I have had a positive
experience creating in-class activities that specifically target my learning objectives, and this approach
is addressed more in another chapter in this book (14). Resources for writing in-class activities
include the POGIL Project (53), as well as a planning tool that integrates backward design with active
learning (40).

Student Buy-In and Groups

Facilitating group work requires decisions about how to compose groups, whether to impose
group roles and a willingness to engage with students and support effective group functioning (54).
More complicated projects, like a CURE, require the students to work together because of their
complexity, which can elicit positive group interdependence (55).

Gaining student buy-in is important. A challenging activity may generate some frustration but
also larger learning gains than a more straightforward activity (56). Sharing this information with
students, along with other relevant student benefits, is important for generating student participation
and engagement. I got excellent advice for how to sell my Biochemistry II CURE from a former
student who returned to serve as a learning assistant for the class. I now have a conversation with the
class exploring why scientific research is important and why an opportunity to participate in research
is beneficial.

Establishing the relevance of the assignment will also help support group function, as does
design of an appropriately challenging assignment (55). As a first day group activity in Biochemistry
II we had students in groups reflect upon past group work experiences to highlight what had worked
well, potential pitfalls, and strategies for overcoming obstacles. Students recognized the importance
of communication and shared responsibility. We also shared strategies from highly-functioning
groups in previous semesters, including simple ones like sharing contact information and
coordination of task management, to support group efficacy.

Feedback and Assessment

Be sure to build in many opportunities to get feedback from your students. One strategy is
to have students write down comments about how the group functioned or challenging content
areas at the end of class. This results in a short note for the instructor from each group that gives
quick insight. Mid-semester surveys, end of project feedback forms, and end of semester reflections
can provide a broader student perspective and are particularly valuable for iterating course design
between semesters. Students also appreciate that we value their feedback and that we are actively
working to continually improve our courses.

Assessment of learning and other outcomes can come through evaluation of student work,
including quizzes, exams, presentations and, my favorite for Biochemistry II, a memo to my
collaborator. It helps with student buy-in and course alignment to include skills developed during
the in-class activities on the quizzes or exams. The perennial student question, “Will this be on the
exam?” can be annoying. I find it very satisfying to say, “Yes, this is fair game for the exam,” for
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everything that we cover in the class, including the content in the in-class activities. When looking
at assessment data, keep in mind that maintaining the same level of achievement is a success because
the intervention did not cause any harm. Identifying other gains, such as in attitude or ability to
work in groups, will require targeted assessment in those domains. I have found a continual cycle
of assessing, reflecting and iterating helps me stay engaged with my teaching and the larger fields
of science education and how learning works. I encourage readers to explore how active learning
can help increase the excitement and energy in the classroom, as well as depth of engagement with
biochemical content, both for the instructor and the students.
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